表面介导(石墨烯)电池对贝特瑞公司的影响

 

锂离子电池

  

锂离子电池原理结构

锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。

主要种类

早期的锂电池

  锂离子电池(Li-ion Batteries)是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电。这种电池也可以充电,但循环性能不好,在充放电循环过程中,容易形成锂结晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。

锂离子电池:炭材料锂电池

  后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。

Li-ion Batteries:摇椅式电池

  我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极负极正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

发展历史

  1970年代埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。

  1982年伊利诺伊理工大学(the Illinois Institute of Technology)R.R.AgarwalJ.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。

  1983M.ThackerayJ.Goodenough等人发  现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。

  1989年,A.ManthiramJ.Goodenough发现采用聚合阴离子的正极将产生更高的电压。

  1991年索尼公司发布首个商用锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。此类以钴酸锂作为正极材料的电池,至今仍是便携电子器件的主要电源。

  1996PadhiGoodenough发现具有橄榄石结构的酸盐,如磷酸铁锂(LiFePO4),比传统的正极材料更具安全性,尤其耐高温,耐过充电性能远超过传统锂离子电池材料。因此已成为当前主流的大电流放电的动力锂电池的正极材料。

组成部分

  钢壳/铝壳/圆柱/软包装系列:

  (1正极——活性物质一般为锰酸锂或者钴酸锂,现在又出现了镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔

  (2隔膜——一种特殊的复合膜,可以让离子通过,但却是电子的绝缘体

  (3负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔

  (4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液

  (5)电池外壳——分为钢壳(现在方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端

化学解析

概述

  和所有化学电池一样,锂离子电池也由三个部分组成:正极、负极和电解质。电极材料都是锂离子可以嵌入(插入)/脱嵌(脱插)的。

正极

  正极材料:如上文所述,可选的正极材料很多,目前主流产品多采用锂铁磷酸盐。不同的正极材料对照:

  

正极材料

平均输出电压

能量密度

LiCoO?

3.7 V

140 mAh/g

LiMn?O?

3.7 V

100 mAh/g

LiFePO?

3.2 V

130 mAh/g

Li2FePO?F

3.6 V

115 mAh/g

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO?

负极

  负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

电解质溶液

  溶质:常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF?)。溶剂:由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜(solid electrolyte interphaseSEI)导致电极钝化。有机溶剂还带来易燃、易爆等安全性问题。

新发展

聚合物锂离子电池

  聚合物锂离子电池是在液态锂离子电池基础上发展起来的,以导电材料为正极,碳材料为负极,电解质采用固态或凝胶态有机导电膜组成,并采用铝塑膜做外包装的最新一代可充锂离子电池。由于性能的更加稳定,因此它也被视为液态锂离子电池的更新换代产品。目前很多企业都在开发这种新型电池

动力锂离子电池

  动力锂离子电池:严格来说,动力锂离子电池是指容量在3AH以上的锂离子电池,目前则泛指能够通过放电给设备、器械、模型、车辆等驱动的锂离子电池,由于使用对象的不同,电池的容量可能达不到单位AH的级别。动力锂离子电池分高容量和高功率两种类型。高容量电池可用于电动工具、自行车、滑板车、矿灯、医疗器械等;高功率电池主要用于混合动力汽车及其它需要大电流充放电的场合。根据内部材料的不同,动力锂离子电池相应地分为液态动力锂离子电池和聚合物理离子动力电池两种,统称为动力锂离子电池。

高性能锂电池

  为了突破传统锂电池的储电瓶颈,研制一种能在很小的储电单元内储存更多电力的全新铁碳储电材料。但是此前这种材料的明显缺点是充电周期不稳定,在电池多次充放电后储电能力明显下降。为此,改用一种新的合成方法。他们用几种原始材料与一种锂盐混合并加热,由此生成了一种带有含碳纳米管的全新纳米结构材料。这种方法在纳米尺度材料上一举创建了储电单元和导电电路。

  目前这种稳定的铁碳材料的储电能力已达到现有储电材料的两倍,而且生产工艺简单,成本较低,而其高性能可以保持很长时间。领导这项研究的马克西米利安·菲希特纳博士说,如果研能够充分开发这种新材料的潜力,将来可以使锂离子电池的储电密度提高5倍。

 

锂离子电池负极材料的研究现状、发展及产业化

2008.08.25

锂离子电池(Lithium Ion Battery,简称LIB) 是继镍镉电池、镍氢电池之后的第三代小型蓄电池。作为一种新型的化学电源,它具有工作电压高、比能量大、放电电位曲线平稳、自放电小、循环寿命长、低温性能好、无记忆、无污染等突出的优点,能够满足人们对便携式电器所需要的电池小型轻量化和有利于环保的双重要求,广泛用于移动通讯、笔记本电脑、摄放一体机等小型电子装置,也是未来电动交通工具使用的理想电源。

锂离子电池自1992年由日本Sony公司商业化开始便迅速发展。2000年以前世界上的锂离子电池产业基本由日本独霸。近年来,随着中国和韩国的崛起,日本一枝独秀的局面被打破。2003年全球生产锂离子电池12.5亿只,其中中国生产4.5亿只(含日本独资和合资),国内电池公司产量大于2.8亿只,占全球锂离子电池总产量的20%以上。近几年我国锂离子电池产量平均以每年翻一番的的速度高速增长,专家预测,未来几年,随着一批骨干企业生产规模的不断扩大,收集和笔记本电脑、摄像机、数码相机等便携产品的持续增长,我国锂离子电池产业仍将保持年平均30%以上的增长速度,2004年国内小型锂离子电池可达日产200300万只,全年产量超过6亿只。锂离子电池能否成功应用,关键在于能可逆地嵌入脱嵌锂离子的负极材料的制备。这类材料要求具有: ①在锂离子的嵌入反应中自由能变化小; ②锂离子在负极的固态结构中有高的扩散率; ③高度可逆的嵌入反应; ④有良好的电导率; ⑤热力学上稳定同时与电解质不发生反应。目前, 研究工作主要集中在碳材料和其它具有特殊结构的化合物。

1.碳负极材料

碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。

炭素材料的种类繁多,其结晶形式有金刚石、石墨及富勒烯和碳纳米管等,非晶态的过渡形式则不胜枚举。对炭素材料有各种分类方法。依照锂离子向炭素材料的嵌入反应特性,人们将炭素材料分为三类,即石墨、焦炭(属于易石墨化炭,或软炭)和难石墨化炭又称硬炭。

炭负极的嵌入能力因所用材料的不同而有所差异,炭材料的结构是其中最重要的因素。最早生产锂离子电池且市场份额最大的日本索尼公司采用的是炭化聚糠醇,这是一种硬炭;三洋公司采用了天然石墨;而松下公司则采用了石墨化的沥青炭微球(即以沥青为原料制成的介稳相球状炭,Meso Carbon Micro Beads 简称MCMB)

众所周知,碳材料种类繁多,目前研究得较多且较为成功的碳负极材料有石墨、乙炔黑、微珠碳、石油焦、碳纤维、裂解聚合物和裂解碳等.在众多的用作碳负极的材料中,天然石墨具有低的嵌入电位,优良的嵌入-脱嵌性能,是良好的锂离子电池负极材料。通常锂在碳材料中形成的化合物的理论表达式为LiC6,按化学计量的理论比容量为372mAh/g。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g1000mAh/g,因此而使锂离子电池的比能量大大增加。所以近年来锂离子电池的研究工作重点在碳负极材料的研究上,且已经取得了许多新的进展。Okuno[8]研究了用中介相沥青焦炭(mesophase pitch carbonMPC)修饰的焦炭电极,发现焦炭电极的比容量仅170mAh/g250mAh/g,焦炭和MPC41的比例混合,比容量为277mAh/g,而用MPC修饰的焦炭电极其比容量为300mAh/g310mAh/g。马树华等[9]在中介相微球石墨(MCMB)电极上人工沉积一层Li2CO3LiOH膜,电极的容量及首次充放电效率均有一定的改善。

邓正华等采用热离子体裂解天然气制备的天然气焦炭具有较好的嵌Li能力,初次放电容量为402mAh/g,充电量为235mAh/g,充放电效率为58.5%。冯熙康等[11]将石油焦在还原气氛中经2600处理后制得的人造石墨外部包覆碳层,发现处理后的这种材料有较高的比容量(330mAh/g),较好的充放电性能,较低的自放电率。三洋公司采用优质天然石墨作负极,石墨在高温下与适量的水蒸气作用,使其表面无定形化,这样Li+较容易嵌入石墨晶格中,从而提高其嵌Li的能力。碳负极的嵌Li能力对不同的材料有所不同,主要是受其结构的影响。如Sony公司使用聚糠醇的化合物,三洋公司使用天然石墨,**公司采用中介相沥青基碳微球。一般说来,无定形碳具有较大的层间距和较小的层平面,如石墨为0.335nm,焦炭为0.34nm0.35nm,有的硬碳高达0.38nmLi+在其中的扩散速度较快,能使电池更快地充放电。Dohn描述了石墨层间距d002与比容量的关系,表明随d002的增大,放电比容量增高。Takami研究了中介相沥青基纤维在不同温度下的层间距和扩散系数,认为层间距取决于碳的石墨化程度,石墨化程度增加可降低Li+扩散的活化能,并有利于Li+的扩散。

1 A1 L6 v3 s0 W$ c+ V高比容量的碳负极材料,可以极大地提高锂离子电池的比能量,但是部分裂解的碳化物有一个明显的缺陷就是电压滞后,即充电时Li+0V(vs. Li+/Li)左右嵌入,而放电时在1V(vs. Li+/Li)脱嵌,尽管此类电池充电电压有4V,但实际上只有3V的工作电压。Takami等认为酚醛树脂、聚苯胺、微珠碳等明显有电压滞后现象。此外,这类材料的制备工序复杂,成本较高。

天然鳞片石墨用作锂离子电池负极材料的不足之处在于石墨层间以较弱的分子间作用力即范德华力结合,充电时,随着溶剂化锂离子的嵌入,层与层之间会产生剥离(exfoliation)并形成新的表面,有机电解液在新形成的表面上不断还原分解形成新的SEI膜,既消耗了大量锂离子,加大了首次不可逆容量损失,同时由于溶剂化锂离子的嵌入和脱出会引起石墨颗粒的体积膨胀和收缩,致使颗粒间的通电网络部分中断,因此循环寿命很差。

  对鳞片石墨进行修饰,可以大大提高它的可逆容量和循环寿命.Kuribayashi等采用酚醛树脂包覆石墨,在7001200惰性气氛下热分解酚醛树脂,形成以石墨为核心、酚醛树脂热解碳为包覆层的低温热解碳包覆石墨。包覆层在很大程度上改善了石墨材料的界面性质。低温热解碳包覆的石墨不仅具有低电位充、放电平台;同时借助于与电解液相容性好的低温热解碳阻止了溶剂分子与锂离子的共嵌入,防止了核心石墨材料在插锂过程中的层离,减少了首次充、放电过程中的不可逆容量损失并延长了电极的循环寿命。此外,对碳材料的改性方法还有表面氧化、机械研磨和掺杂等,可以有效提高电极的电化学性能。

2.非碳负极材料    

近年来对LIB非碳类负极材料的研究也非常广泛。根据其组成通常可分为:锂过渡金属氮化物、过渡金属氧化物和纳米合金材料。锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。如Li3FeN2用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs Li/Li+)附近,充、放电曲线非常平坦,无放电滞后,但容量有明显衰减。Li3-xCoxN具有900mAh/g的高放电容量,放电电位在1.0V左右,但充、放电曲线不太平稳,有明显的电位滞后和容量衰减。目前来看,这类材料要达到实际应用,还需要进一步深入研究。SnO/SnO2用作LIB负极具有比容量高、放电电位比较低(0.4~0.6V vs Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2因制备方法不同电化学性能有很大不同。如低压化学气相沉积法制备的SnO2可逆容量为500mAh/g以上,而且循环寿命比较理想,100次循环以后也没有衰减。在SnO(SnO2)中引入一些非金属、金属氧化物,如BAlGeTiMnFe等并进行热处理,可以得到无定型的复合氧化物称为非晶态锡基复合氧化物(Amorphous Tin-based Composite Oxide 简称为ATCO)。与锡的氧化物(SnO/SnO2)相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。

    纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。某些金属如SnSiAl等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10倍。合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。

总之,非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。

3.产业化现状

在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球(MCMB)、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。我国拥有丰富的天然石墨矿产资源,在以天然石墨为原料的锂离子负极材料的产业化方面,深圳贝特瑞电池材料有限公司以高新科技促进传统产业的发展,运用独特的整形分级、机械改性和热化学提纯技术,将普通鳞片石墨加工成球形石墨,将纯度提高到99.95%以上,最高可以达到99.9995%。并通过机械融合、化学改性等先进的表面改性技术研制、生产出具有国际领先水平的高端负极材料产品,其首次放电容量达360mAh/g以上,首次效率大于95%,压实比达1.7g/cm3,循环寿命500次容量保持在88%以上。产品出口至日本、韩国、美国、加拿大、丹麦、印度等国家,并在国内40余家锂电厂家应用。该公司年产1800吨天然复合石墨(MSGAMG 616717818等)、1200吨人造石墨负极材料(SAG系列、NAG系列、316系列、317系列)、3000吨球形石墨(SG)、5000吨天然微粉石墨和600吨锰酸锂正极材料,并正在不断扩大生产规模,同时可以根据客户的需求、工艺、设备以及存在的问题为客户开发客户需要的产品。生产的产品品质稳定、均一,具有很好的电化学性能和卓越加工性能,可调产品的比表面积、振实密度、压实密度、不纯物含量和粒度分布等。主要生产设备和检测仪器均从国外进口,从而形成该公司独特的核心竞争力的一部分。在锂离子电池负极材料行业贝特瑞已经引领了该行业的发展方向。

在锂离子电池负极材料领域,该公司的锂离子电池负极材料的已站在新一代国产化材料应用的前沿,代表着石墨深加工的方向。为确保产品持续领先,不断进行技术创新、产品创新、制度创新、思维理念创新,持续进行新产品开发,新近又推出了超高容量的合金负极材料(可逆容量>450mAh/g)、复合石墨PW系列、BF系列、纳米导电材料、锂离子动力电池用多元复合负极材料等产品。 

 

表面介导电池可使电动汽车充电时间仅需几分钟

来源:麻省理工科技创业

2011-08-22

对比超级电容器和电池,如图所示的表面介导电池有三种不同的电极厚度,既有高功率密度,也有高能量密度。来源:美国化学学会

    从哪方面看,它都像是一项电池技术的突破,只是它不是电池。纳米技术仪器股份有限公司(Nanotek Instruments, Inc.)及其附属公司,俄亥俄州(Ohio)代顿(Dayton)的安格斯特朗材料股份有限公司(Angstron Materials, Inc.)的研究人员,开发出一种新规范,用于设计储能设备,这种设备依赖于使大量锂离子快速穿梭在电极之间,这种电极具有很大的石墨烯表面。这种能量存储装置可以证明对电动汽车非常有用,它可以减少充电时间,从数小时缩短到不到一分钟。其他应用可能包括可再生能源储存(例如,储存太阳能和风能)和智能电网。

    研究人员称,这种新设备是“石墨烯表面功能的锂离子交换电池”,或更简单地说,是“表面介导电池”(SMCSsurface-mediated cells)。虽然目前的设备使用未优化的材料和结构,但是,它们已经可以超越锂离子电池和超级电容器。这种新设备可以提供每公斤电池100千瓦的功率密度,比商业化锂离子电池高100倍,比超级电容器高10倍。功率密度越高,能量转移速度越快(会导致更快的充电速度)。此外,这种新电池可以储存的能量密度为每公斤电池160瓦时,可媲美商业化锂离子电池,比传统超级电容器高30倍。能量密度越大,相同体积的设备可以存储的能量越多(带来电动汽车更长的行驶里程)。

    “假如有相同的设备重量,目前的表面介导电池和锂离子电池可以为电动汽车提供类似的行驶里程,”纳米仪器公司和安格斯特朗材料公司联合创始人姜•鲍尔兹(Bor Z. Jang)说,我们的表面介导电池就像目前的锂离子电池一样,可进一步提高能量密度,因此同样可以提高行程。然而,在原则上,表面介导电池可以在几分钟内充电(可能不到一分钟),而不是数小时,就像目前电动汽车使用的锂离子电池那样。”

    姜•鲍尔兹和他在纳米技术仪器公司和安格斯特朗材料公司的合作者,已经发表了这项研究,就是对下一代能量存储设备的研究,就发表在最近一期的《纳米快报》(Nano Letters)上。两家公司都专门从事纳米材料的商业化,安格斯特朗公司是世界上最大的纳米石墨烯片晶(NGPsnano graphene platelets)生产商。

    正如研究人员在他们的研究中解释说,在能量存储上,电池和超级电容器都有各自的长处和弱点。虽然锂离子电池的能量密度(120-150瓦时/公斤电池)比超级电容器(5瓦时/ 公斤电池)高得多,但是,这种电池具有低得多的功率密度(1千瓦/ 公斤电池,对比10千瓦/ 公斤电池)。许多研究小组做出努力,以增加锂离子电池的功率密度,提高超级电容器的能量密度,但是,这两个领域仍然具有重大的挑战。因为提供了一个全新的框架,可用于储能装置,所以,这种表面介导电池使研究人员能够绕过这些挑战。

    “开发这种新的储能装置,缩小了锂离子电池和超级电容器性能上的差距,”姜•鲍尔兹说。 “更重要的是,这一根本上新的框架,用于制造储能装置,使研究人员既可以实现高能量密度,也可以实现高功率密度,而不必牺牲一个来换取另一个。”

表面介导电池电极有很大表面积,使大量离子在电极之间快速穿梭,带来快速的充电时间。来源:美国化学学会

    表面介导电池性能的关键,是阴极和阳极都包含非常大的石墨烯表面。在制造电池时,研究人员把锂金属(以粒子或金属箔的形式)放在阳极。在首次放电周期,锂被离子化,带来的锂离子数量,比在锂离子电池中要大得多。在电池被使用时,这些离子通过液体电解质迁移到阴极,进入阴极中的孔穴,到达阴极内很大的石墨烯表面。在充电过程中,大量的锂离子通量迅速从阴极迁移到阳极。很大的电极表面积,使大量离子在电极之间快速穿梭,产生很高的功率和能量密度。

    研究人员解释说,“多孔电极表面(而不是在块状电极中,就像电池中那样)之间的锂离子交换,完全不需要耗时的插层过程。在这个过程中,锂离子必须插入电极之间,这就构成了主要的电池充电时间。

    在这项研究中,虽然研究人员采用大量不同类型的石墨,制备了不同类型的石墨烯(氧化的,降低的单层和多层石墨烯),但是,需要进一步分析这些材料和配置,以优化这种设备。一方面,研究人员计划进一步研究这种电池的循环寿命。到目前为止,他们发现,这些设备在经过1000次循环后,可以保留95%的容量,甚至在2000次循环后,仍然没有表现出枝蔓晶(dendrite)形成的迹象。研究人员还计划探讨,不同的锂存储机制对设备性能的相对作用。

    “我们估计,表面介导电池技术的商业化不会有什么大的障碍,”姜•鲍尔兹说。“虽然目前石墨烯是高价出售,但是,安格斯特朗材料公司正在积极扩大石墨烯生产能力。预计在未来1-3年,石墨的生产成本将显着降低。”

 

 

 

石墨烯表面锂离子交换电池 电动充电仅需一分钟

来源:科技日报

2011.09.15

2011-09-15

  一种看起来怎么也和电池搭不上界的物质,成了突破电池技术瓶颈的关键。美国俄亥俄州Nanotek仪器公司的研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备,可以将充电时间从过去的数小时之久缩短到不到一分钟。该研究发表在近期出版的《纳米快报》上。

  电池充电性能成为电动车发展的最大挑战

  众所周知,电动汽车因其清洁节能的特点而被视为汽车的未来发展方向,但电动汽车的发展面临的主要技术瓶颈就是电池技术。这主要表现在以下几个方面:一是电池的能量储存密度,指的是在一定的空间或质量物质中储存能量的大小,要解决的是电动车充一次电能跑多远的问题。二是电池的充电性能。人们希望电动车充电能像加油一样,在几分钟内就可以完成,但耗时问题始终是电池技术难以逾越的障碍。动辄数小时的充电时间,让许多对电动车感兴趣的人望而却步。因此,有人又将电动车电池的充电性能称为电动车发展的真正瓶颈。

目前在电池技术上主要采用的是锂电池和超级电容技术,锂电池和超级电容各有长短。锂离子电池能量储存密度高,为120/公斤到150/公斤,超级电容的能量储存密度低,为5/公斤。但锂电池的功率密度低,为1千瓦/公斤,而超级电容的功率密度为10千瓦/公斤。目前大量的研究工作集中于提高锂离子电池的功率密度或增加超级电容的能量储存密度这两个领域,但挑战十分巨大。

  新研究通过采用石墨烯这种神奇的材料,绕过了挑战。石墨烯因具有如下特点成为新储能设备的首选:它是目前已知导电性最高的材料,比铜高五倍;具有很强的散热能力;密度低,比铜低四倍,重量更轻;表面面积是碳纳米管两倍时,强度超过钢;超高的杨氏模量和最高的内在强度;比表面积(即单位质量物料所具有的总面积)高;不容易发生置换反应。

  新设备让电动车不到1分钟充满电

  新储能设备又称为石墨烯表面锂离子交换电池,或简称为表面介导电池(SMCS),它集中了锂电池和超级电容的优点,同时兼具高功率密度和高能量储存密度的特性。虽然目前的储能设备尚未采用优化的材料和结构,但性能已经超过了锂离子电池和超级电容。新设备的功率密度(即电池能输出最大的功率除以整个燃料电池系统的重量或体积)为100千瓦/公斤,比商业锂离子电池高100倍,比超级电容高10倍。功率密度高,能量转移率就高,充电时间就会缩短。此外,新电池的能量储存密度为160/公斤,与商业锂离子电池相当,比传统超级电容高30倍。能量储存密度越大,存储的能量就越多。

  SMCS的关键是其阴极和阳极有非常大的石墨烯表面。在制造电池时,研究人员将锂金属置于阳极。首次放电时,锂金属发生离子化,通过电解液向阴极迁移。离子通过石墨烯表面的小孔,到达阴极。在充电过程中,由于石墨烯电极表面积很大,大量的锂离子可以迅速从阴极向阳极迁移,形成高功率密度和高能量密度。研究人员解释说,锂离子在多孔电极表面的交换可以消除嵌插过程所需的时间。在研究中,研究人员准备了氧化石墨烯、单层石墨烯和多层石墨烯等各种不同类型的石墨烯材料,以便优化设备的材料配置。下一步将重点研究电池的循环寿命。目前的研究表明,充电1000次后,可以保留95%容量;充电2000次后,尚未发现形成晶体结构。研究人员还计划探讨锂不同的存储机制对设备性能的影响。

  研究表明,在重量相同的情况下,仅以尚未优化的SMC替代锂离子电池,SMC或锂离子电池电动车的驾驶距离相同,但SMC的充电时间不到一分钟,而锂离子电池则需要数小时。研究人员相信,优化后SMC的性能会更好。

如果今后电动汽车广为流行,充电站设置在加油站,其结果将会出现一幅十分有趣的情景,那就是电动车的充电时间将比加油还要快,而且比加油还便宜。研究人员表示,除了电动汽车外,该设备还可用于再生能源储存(如储存太阳能和风能)和智能电网。

 

 

中国宝安2011年中报(节选)

1、高新技术产业

经过近年来的产业扩张与快速成长,本集团的高新技术产业获得了长足的发展与进步,形成了以新能源、新材料为产业方向,以贝特瑞公司为龙头的企业集群。报告期内,高新技术产业实现主营业务收入32,090万元,比上年同期增长了一倍。其中:

本集团控股的贝特瑞公司在出口业务的带动下,上半年销售收入同比增长超过60%,其中出口销售额同比增长超过100%。在国际市场上,贝特瑞公司已与全球四大客户三星、LG、三洋、索尼取得密切合作。在企业扩张方面,完善了锂离子电池负极材料产业链的投资,鸡西贝特瑞石墨产业园二期和天津市贝特瑞新能源科技产业园建设顺利;上游石墨矿的拿矿工作在顺利推进中。在研发方面,已完成高倍率、高容量的钛酸锂(LTO)开发和产业化,实现批量生产和销售;实现导电石墨的开发并部分销售;实现碳纳米导电液的开发和生产;石墨烯正在进行中试工艺的开发和中试线组建。

 

总结:

1、超级电容和锂电池是新能源汽车技术原有的两个发展方向,锂电池和超级电容各有长短。锂离子电池能量储存密度高,为120/公斤到150/公斤,超级电容的能量储存密度低,为5/公斤。但锂电池的功率密度低,为1千瓦/公斤,而超级电容的功率密度为10千瓦/公斤。目前大量的研究工作集中于提高锂离子电池的功率密度或增加超级电容的能量储存密度这两个领域,但挑战十分巨大;现在又有了最新的表面介导电池第三个发展方向。

2石墨烯表面锂离子交换电池,或简称为表面介导电池(SMCS),它集中了锂电池和超级电容的优点,同时兼具高功率密度和高能量储存密度的特性。虽然目前的储能设备尚未采用优化的材料和结构,但性能已经超过了锂离子电池和超级电容。新设备的功率密度(即电池能输出最大的功率除以整个燃料电池系统的重量或体积)为100千瓦/公斤,比商业锂离子电池高100倍,比超级电容高10倍。功率密度高,能量转移率就高,充电时间就会缩短。此外,新电池的能量储存密度为160/公斤,与商业锂离子电池相当,比传统超级电容高30倍。能量储存密度越大,存储的能量就越多。

3表面介导电池(SMCS的关键是其阴极和阳极有非常大的石墨烯表面。在制造电池时,研究人员将锂金属置于阳极。首次放电时,锂金属发生离子化,通过电解液向阴极迁移。离子通过石墨烯表面的小孔,到达阴极。在充电过程中,由于石墨烯电极表面积很大,大量的锂离子可以迅速从阴极向阳极迁移,形成高功率密度和高能量密度。研究人员解释说,锂离子在多孔电极表面的交换可以消除嵌插过程所需的时间。在研究中,研究人员准备了氧化石墨烯、单层石墨烯和多层石墨烯等各种不同类型的石墨烯材料,以便优化设备的材料配置。

4、贝特瑞按2011年中报称,正在中试单层石墨烯和多层石墨烯混合物,表面介导电池的发展对贝特瑞是特大利好消息。